Acute leptin response after high intensity interval and moderate intensity continuous runs

Authors

  • Alesson Rodrigues Laboratory of Human Performance of the University of Santa Catarina State, SC Brazil
  • Leonardo De Lucca University of Santa Catarina State http://orcid.org/0000-0003-0324-0387

DOI:

https://doi.org/10.21134/eurjhm.2020.45.3

Keywords:

leptin, exercise metabolism, endurance training, high intensity interval training, running

Abstract

The possible direct role of exercise intensity and duration on leptin concentrations is conflicting. The aim of this study was to evaluate the acute effects of high intensity interval (HIIE) and moderate intensity continuous (MICE) exercise on plasma leptin response. Seven young volunteers underwent three tests: 1) a treadmill graded exercise test to identify running peak velocity (PV); 2) HIIE: 5 × 2 min work bouts at 90% of PV, interspersed by 2 min of passive recovery and; 3) MICE: 30 min at 70 % of PV. Blood samples were drawn for the assays of leptin before and 30 minutes after HIIE and MICE. A 2-way repeated measures ANOVA showed a significant main effect of time [F(1,6) =17,52; p=0,006], no significant effect of condition (type of exercise) (F(1,6) = 0,16; p = 0,68) and no significant interaction (condition × time) (F(1,6)= 0,48, p=0,51). Leptin decreased 30 min after HIIE (t= 2,95, p=0,025) and MICE (t=4,18; p=0,005). There was no difference between the HIIE and MICE conditions immediately after exercise (t=0,90; p=0,40). After HIIE and MICE, leptin decreased in the same magnitude. It appears that both exercise modalities result in physical stress which is sufficient to improve short-term leptin sensibility.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Leonardo De Lucca, University of Santa Catarina State

Master in Human Movement Sciences, Collaborative Researcher at Laboratory of Human Performance, Center of Health and Sport Sciences - University of Santa Catarina State.

References

Aggel-Leijssen, V., Dorien, P. C., Van Baak, M. A., Tenenbaum, R., Campfield, L. A., & Saris, W. H. M. (1999). Regulation of average 24 h human plasma leptin level the influence of exercise and physiological changes in energy balance. International Journal of Obesity, 23(2), 151–158. https://doi.org/10.1038/sj.ijo.0800784

Binder, R. K., Wonisch, M., Corra, U., Cohen-Solal, A., Vanhees, L., Saner, H., & Schmid, J. P. (2008). Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. European Journal of Preventive Cardiology, 15(6), 726–734. https://doi.org/10.1097/HJR.0b013e328304fed4.

Christensen, N., Galbo, H., Hasen, J., Hesse, B., Richter, E., & Trap-Jensen, J. (1979). Catecholamines and exercise. Diabetes, 28, 58–62. https://doi.org/10.2337/diab.28.1.s58

De Souza, D., Matos, V., dos Santos, V., Medeiros, I., Marinho, C. S. R., Nascimento, P. R. P., Dorneles, G. P., Peres, A., Müller, C. H., Krause, M., Costa, E. C., & Fayh, A. P. T. (2018). Effects of high-intensity interval and moderate-intensity continuous exercise on inflammatory, leptin, IgA, and lipid peroxidation responses in obese males. Frontiers in Physiology, 9, 1–9. https://doi.org/10.3389/fphys.2018.00567

Dubuc, G., Phinney, S., Stern, J., & Havel, P. (1998). Changes of serum leptin and endocrine and metabolic parameters after 7 days of energy restriction in men and women. Metabolism - Clinical and Experimental, 47, 429–424. https://doi.org/10.1016/s0026-0495(98)90055-5

Duclos, M., Corcuff, J. B., Ruffie, A., Roger, P., & Manier, G. (1999). Rapid leptin decrease in immediate post-exercise recovery. Clinical Endocrinology, 50(3), 337–342. https://doi.org/10.1046/j.1365-2265.1999.00653.x.

Elias, A., Pandian, M., Wang, L., Suarez, E., James, N., & Wilson, A. (2000). Leptin and IGF-I levels in unconditioned male volunteers after short-term exercise. Psychoneuroendocrinology, 25(5), 453–461. https://doi.org/10.1016/s0306-4530(99)00070-0.

Engel, F., Härtel, S., Wagner, M. O., Strahler, J., Bös, K., & Sperlich, B. (2014). Hormonal, metabolic, and cardiorespiratory responses of young and adult athletes to a single session of high-intensity cycle exercise. Pediatric Exercise Science, 26(4), 485–494. https://doi.org/10.1123/pes.2013-0152

Erdfelder, E., FAul, F., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149

Faude, O., Meyer, T., & Kindermann, W. (2009). Lactate Threshold Concepts: How Valid are they? Sports Medicine, 39(6), 469–490. https://doi.org/10.2165/00007256-200939060-00003.

Fisher, J., Van Pelt, R., Zinder, O., Landt, M., & Kohrt, W. (2001). Acute exercise effect on postabsorptive serum leptin. Journal of Applied Physiology, 91(2), 680–686. https://doi.org/10.1152/jappl.2001.91.2.680.

Fritsche, A., Wah, l H., Metzinger, E., Renn, W., Kellerer, M., Häring, H., & Stumvoll, M. (1998). Evidence for inhibition of leptin secretion by catecholamines in man. Experimental and Clinical Endocrinology & Diabetes, 106, 415–418. https://doi.org/10.1055/s-0029-1212008.

Guerra, B., Guadalupe-Grau, A., Fuentes, T., Ponce-González, J. G., Morales-Alamo, D., Olmedillas, H., Guillén-Salgado, J., Santana, A., & Calbet, J. A. L. (2010). SIRT1, AMP-activated protein kinase phosphorylation and downstream kinases in response to a single bout of sprint exercise: Influence of glucose ingestion. European Journal of Applied Physiology, 109(4), 731–743. https://doi.org/10.1007/s00421-010-1413-y

Guerra, B., Olmedillas, H., Guadalupe-Grau, A., Ponce-González, J. G., Morales-Alamo, D., Fuentes, T., Chapinal, E., Fernández-Pérez, L., De Pablos-Velasco, P., Santana, A., & Calbet, J. A. L. (2011). Is sprint exercise a leptin signaling mimetic in human skeletal muscle? Journal of Applied Physiology, 111(3), 715–725. https://doi.org/10.1152/japplphysiol.00805.2010

Hackney, A. C., Hosick, K. P., Myer, A., Rubin, D. A., & Battaglini, C. L. (2012). Thyroid hormonal responses to intensive interval versus steady-state endurance exercise. Hormones, 35(11), 947–950. https://doi.org/10.1007/BF03346740

Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports & Exercise, 41(1), 3–13. https://doi.org/10.1249/MSS.0b013e31818cb278

IBM Corp. Released 2016. IBM SPSS Statistics for Windows (24.0). (2016). IBM Corp.

Jürimäe, J., & Jürimäe, T. (2005). Leptin responses to short term exercise in college level male rowers. British Journal of Sports Medicine, 39(1), 6–9. https://doi.org/10.1136/bjsm.2003.008516

Koivisto, V., Hendler, R., Nadel, E., & Felig, P. (1982). Influence of physical training on the fuel-hormone response to prolonged low intensity exercise. Metabolism, 31, 192–197. https://doi.org/10.1016/0026-0495(82)90135-4.

Kolaczynski, J., Ohannesian, J., Considine, R., Marco, C., & Caro, J. (1996). Response of leptin to short-term and prolonged overfeeding in humans. The Journal of Clinical Endocrinology and Metabolism, 81(11), 4162–4165. https://doi.org/10.1210/jcem.81.11.8923877

Kuipers, H., Verstappen, F. T., Keizer, H. A., Geurten, P., & van Kranenburg, G. (1985). Variability of aerobic performance in the laboratory and its physiologic correlates. International Journal of Sports Medicine, 6(4), 197–201. https://doi.org/10.1055/s-2008-1025839

Larsen, P., Marino, F., Melehan, K., Guelfi, K. J., Duffield, R., & Skein, M. (2019). High-intensity interval exercise induces greater acute changes in sleep, appetite-related hormones, and free-living energy intake than does moderate-intensity continuous exercise. Applied Physiology, Nutrition and Metabolism, 44(5), 557–566. https://doi.org/10.1139/apnm-2018-0503

Myers, M. G., Leibel, R. L., Seeley, R. J., & Schwartz, M. W. (2010). Obesity and leptin resistance: Distinguishing cause from effect. Trends in Endocrinology and Metabolism, 21(11), 643–651. https://doi.org/10.1016/j.tem.2010.08.002

Olive, J. L., & Miller, G. D. (2001). Differential effects of maximal- and moderate-intensity runs on plasma leptin in healthy trained subjects. Nutrition, 17(5), 365–369. https://doi.org/10.1016/s0899-9007(01)00522-6

Park, H., & Ahima, R. (2015). Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism, 64(1), 24–34. https://doi.org/10.1016/j.metabol.2014.08.004

Perusse, L., Collier, G., Gagnon, J., Leon, A., Rao, D., Skinner, J., Wilmore, J., Nadeau, A., Zimmet, P., & Bouchard, C. (1997). Acute and chronic effects of exercise on leptin levels in humans. Journal of Applied Physiology, 83(1), 5–10. https://doi.org/10.220.32.246

Salbe, A. D., Nicolson, M., & Ravussin, E. (1997). Total energy expenditure and the level of physical activity correlate with plasma leptin concentrations in five-year-old children. Journal of Clinical Investigation, 99(4), 592–595. https://doi.org/10.1172/JCI119200

Scriba, D., Aprath-Husmann, I., Blum, W., & Hauner, H. (2000). Catecholamines suppress leptin release from in vitro differentiated subcutaneous human adipocytes in primary culture via beta1- and beta2-adren- ergic receptors. European Journal of Endocrinology, 143, 439–445. https://doi.org/10.1530/eje.0.1430439

Shiver, J., Reimann, K., Lord, C., Miura, A., Khunkhun, R., Wagner, W., Tyeryar, S., & Crabbs, C. (2002). Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature, 415(January), 339–343. https://doi.org/10.1038/415339a.

Sivitz, W., Fink, B., Morgan, D., Fox, J., Donohoue, P., & Haynes, W. (1999). Sympathetic inhibition, leptin, and uncoupling protein subtype expression in normal fasting rats. American Journal of Physiology, 277(4), 668–677. https://doi.org/10.1152/ajpendo.1999.277.4.E668.

Talanian, J. L., Galloway, S. D. R., Heigenhauser, G. J. F., Bonen, A., & Spriet, L. L. (2007). Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of Applied Physiology, 102(4), 1439–1447. https://doi.org/10.1152/japplphysiol.01098.2006

Trapp, E. G., Chisholm, D. J., Freund, J., & Boutcher, S. H. (2008). The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. International Journal of Obesity, 32(4), 684–691. https://doi.org/10.1038/sj.ijo.0803781

Tuominen, J., Ebeling, P., Laquier, F., Heiman, M., Stephens, T., & Koivisto, V. (1997). Serum leptin concentration and fuel homeostasis in healthy man. European Journal of Clinical Investigation, 27(3), 206–2011. https://doi.org/10.1046/j.1365-2362.1997.940642.x.

Weigle, D., Duell, P. B., Connor, W. E., Steiner, R. A., Soules, M. R., & Kuijper, J. L. (1997). Effect of fasting, refeeding, and dietary fat restriction on plasma leptin levels. Journal of Clinical Endocrinology and Metabolism, 82(2), 561–565. https://doi.org/10.1210/jc.82.2.561

Weltman, a, Pritzlaff, C. J., Wideman, L., Considine, R. V, Fryburg, D. a, Gutgesell, M. E., Hartman, M. L., & Veldhuis, J. D. (2000). Intensity of acute exercise does not affect serum leptin concentrations in young men. Medicine and Science in Sports and Exercise, 32(9), 1556–1561. https://doi.org/10.1097/00005768-200009000-00005.

Williams, C. B., Zelt, J. G. E., Castellani, L. N., Little, J. P., Jung, M. E., Wright, D. C., Tschakovsky, M. E., & Gurd, B. J. (2013). Changes in mechanisms proposed to mediate fat loss following an acute bout of high-intensity interval and endurance exercise. Applied Physiology, Nutrition, and Metabolism, 38(12), 1236–1244. https://doi.org/10.1139/apnm-2013-0101

Zaccaria, M., Ermolao, A., Brugin, E., & Bergamin, M. (2013). Plasma leptin and energy expenditure during prolonged, moderate intensity, treadmill exercise. Journal of Endocrinological Investigation, 36(6), 396–401. https://doi.org/10.3275/8656

Downloads

Published

2020-12-31

Issue

Section

Original Research