Acute leptin response after high intensity interval and moderate intensity continuous runs
DOI:
https://doi.org/10.21134/eurjhm.2020.45.3Keywords:
leptin, exercise metabolism, endurance training, high intensity interval training, runningAbstract
The possible direct role of exercise intensity and duration on leptin concentrations is conflicting. The aim of this study was to evaluate the acute effects of high intensity interval (HIIE) and moderate intensity continuous (MICE) exercise on plasma leptin response. Seven young volunteers underwent three tests: 1) a treadmill graded exercise test to identify running peak velocity (PV); 2) HIIE: 5 × 2 min work bouts at 90% of PV, interspersed by 2 min of passive recovery and; 3) MICE: 30 min at 70 % of PV. Blood samples were drawn for the assays of leptin before and 30 minutes after HIIE and MICE. A 2-way repeated measures ANOVA showed a significant main effect of time [F(1,6) =17,52; p=0,006], no significant effect of condition (type of exercise) (F(1,6) = 0,16; p = 0,68) and no significant interaction (condition × time) (F(1,6)= 0,48, p=0,51). Leptin decreased 30 min after HIIE (t= 2,95, p=0,025) and MICE (t=4,18; p=0,005). There was no difference between the HIIE and MICE conditions immediately after exercise (t=0,90; p=0,40). After HIIE and MICE, leptin decreased in the same magnitude. It appears that both exercise modalities result in physical stress which is sufficient to improve short-term leptin sensibility.
Downloads
Metrics
References
Aggel-Leijssen, V., Dorien, P. C., Van Baak, M. A., Tenenbaum, R., Campfield, L. A., & Saris, W. H. M. (1999). Regulation of average 24 h human plasma leptin level the influence of exercise and physiological changes in energy balance. International Journal of Obesity, 23(2), 151–158. https://doi.org/10.1038/sj.ijo.0800784
Binder, R. K., Wonisch, M., Corra, U., Cohen-Solal, A., Vanhees, L., Saner, H., & Schmid, J. P. (2008). Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. European Journal of Preventive Cardiology, 15(6), 726–734. https://doi.org/10.1097/HJR.0b013e328304fed4.
Christensen, N., Galbo, H., Hasen, J., Hesse, B., Richter, E., & Trap-Jensen, J. (1979). Catecholamines and exercise. Diabetes, 28, 58–62. https://doi.org/10.2337/diab.28.1.s58
De Souza, D., Matos, V., dos Santos, V., Medeiros, I., Marinho, C. S. R., Nascimento, P. R. P., Dorneles, G. P., Peres, A., Müller, C. H., Krause, M., Costa, E. C., & Fayh, A. P. T. (2018). Effects of high-intensity interval and moderate-intensity continuous exercise on inflammatory, leptin, IgA, and lipid peroxidation responses in obese males. Frontiers in Physiology, 9, 1–9. https://doi.org/10.3389/fphys.2018.00567
Dubuc, G., Phinney, S., Stern, J., & Havel, P. (1998). Changes of serum leptin and endocrine and metabolic parameters after 7 days of energy restriction in men and women. Metabolism - Clinical and Experimental, 47, 429–424. https://doi.org/10.1016/s0026-0495(98)90055-5
Duclos, M., Corcuff, J. B., Ruffie, A., Roger, P., & Manier, G. (1999). Rapid leptin decrease in immediate post-exercise recovery. Clinical Endocrinology, 50(3), 337–342. https://doi.org/10.1046/j.1365-2265.1999.00653.x.
Elias, A., Pandian, M., Wang, L., Suarez, E., James, N., & Wilson, A. (2000). Leptin and IGF-I levels in unconditioned male volunteers after short-term exercise. Psychoneuroendocrinology, 25(5), 453–461. https://doi.org/10.1016/s0306-4530(99)00070-0.
Engel, F., Härtel, S., Wagner, M. O., Strahler, J., Bös, K., & Sperlich, B. (2014). Hormonal, metabolic, and cardiorespiratory responses of young and adult athletes to a single session of high-intensity cycle exercise. Pediatric Exercise Science, 26(4), 485–494. https://doi.org/10.1123/pes.2013-0152
Erdfelder, E., FAul, F., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149
Faude, O., Meyer, T., & Kindermann, W. (2009). Lactate Threshold Concepts: How Valid are they? Sports Medicine, 39(6), 469–490. https://doi.org/10.2165/00007256-200939060-00003.
Fisher, J., Van Pelt, R., Zinder, O., Landt, M., & Kohrt, W. (2001). Acute exercise effect on postabsorptive serum leptin. Journal of Applied Physiology, 91(2), 680–686. https://doi.org/10.1152/jappl.2001.91.2.680.
Fritsche, A., Wah, l H., Metzinger, E., Renn, W., Kellerer, M., Häring, H., & Stumvoll, M. (1998). Evidence for inhibition of leptin secretion by catecholamines in man. Experimental and Clinical Endocrinology & Diabetes, 106, 415–418. https://doi.org/10.1055/s-0029-1212008.
Guerra, B., Guadalupe-Grau, A., Fuentes, T., Ponce-González, J. G., Morales-Alamo, D., Olmedillas, H., Guillén-Salgado, J., Santana, A., & Calbet, J. A. L. (2010). SIRT1, AMP-activated protein kinase phosphorylation and downstream kinases in response to a single bout of sprint exercise: Influence of glucose ingestion. European Journal of Applied Physiology, 109(4), 731–743. https://doi.org/10.1007/s00421-010-1413-y
Guerra, B., Olmedillas, H., Guadalupe-Grau, A., Ponce-González, J. G., Morales-Alamo, D., Fuentes, T., Chapinal, E., Fernández-Pérez, L., De Pablos-Velasco, P., Santana, A., & Calbet, J. A. L. (2011). Is sprint exercise a leptin signaling mimetic in human skeletal muscle? Journal of Applied Physiology, 111(3), 715–725. https://doi.org/10.1152/japplphysiol.00805.2010
Hackney, A. C., Hosick, K. P., Myer, A., Rubin, D. A., & Battaglini, C. L. (2012). Thyroid hormonal responses to intensive interval versus steady-state endurance exercise. Hormones, 35(11), 947–950. https://doi.org/10.1007/BF03346740
Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports & Exercise, 41(1), 3–13. https://doi.org/10.1249/MSS.0b013e31818cb278
IBM Corp. Released 2016. IBM SPSS Statistics for Windows (24.0). (2016). IBM Corp.
Jürimäe, J., & Jürimäe, T. (2005). Leptin responses to short term exercise in college level male rowers. British Journal of Sports Medicine, 39(1), 6–9. https://doi.org/10.1136/bjsm.2003.008516
Koivisto, V., Hendler, R., Nadel, E., & Felig, P. (1982). Influence of physical training on the fuel-hormone response to prolonged low intensity exercise. Metabolism, 31, 192–197. https://doi.org/10.1016/0026-0495(82)90135-4.
Kolaczynski, J., Ohannesian, J., Considine, R., Marco, C., & Caro, J. (1996). Response of leptin to short-term and prolonged overfeeding in humans. The Journal of Clinical Endocrinology and Metabolism, 81(11), 4162–4165. https://doi.org/10.1210/jcem.81.11.8923877
Kuipers, H., Verstappen, F. T., Keizer, H. A., Geurten, P., & van Kranenburg, G. (1985). Variability of aerobic performance in the laboratory and its physiologic correlates. International Journal of Sports Medicine, 6(4), 197–201. https://doi.org/10.1055/s-2008-1025839
Larsen, P., Marino, F., Melehan, K., Guelfi, K. J., Duffield, R., & Skein, M. (2019). High-intensity interval exercise induces greater acute changes in sleep, appetite-related hormones, and free-living energy intake than does moderate-intensity continuous exercise. Applied Physiology, Nutrition and Metabolism, 44(5), 557–566. https://doi.org/10.1139/apnm-2018-0503
Myers, M. G., Leibel, R. L., Seeley, R. J., & Schwartz, M. W. (2010). Obesity and leptin resistance: Distinguishing cause from effect. Trends in Endocrinology and Metabolism, 21(11), 643–651. https://doi.org/10.1016/j.tem.2010.08.002
Olive, J. L., & Miller, G. D. (2001). Differential effects of maximal- and moderate-intensity runs on plasma leptin in healthy trained subjects. Nutrition, 17(5), 365–369. https://doi.org/10.1016/s0899-9007(01)00522-6
Park, H., & Ahima, R. (2015). Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism, 64(1), 24–34. https://doi.org/10.1016/j.metabol.2014.08.004
Perusse, L., Collier, G., Gagnon, J., Leon, A., Rao, D., Skinner, J., Wilmore, J., Nadeau, A., Zimmet, P., & Bouchard, C. (1997). Acute and chronic effects of exercise on leptin levels in humans. Journal of Applied Physiology, 83(1), 5–10. https://doi.org/10.220.32.246
Salbe, A. D., Nicolson, M., & Ravussin, E. (1997). Total energy expenditure and the level of physical activity correlate with plasma leptin concentrations in five-year-old children. Journal of Clinical Investigation, 99(4), 592–595. https://doi.org/10.1172/JCI119200
Scriba, D., Aprath-Husmann, I., Blum, W., & Hauner, H. (2000). Catecholamines suppress leptin release from in vitro differentiated subcutaneous human adipocytes in primary culture via beta1- and beta2-adren- ergic receptors. European Journal of Endocrinology, 143, 439–445. https://doi.org/10.1530/eje.0.1430439
Shiver, J., Reimann, K., Lord, C., Miura, A., Khunkhun, R., Wagner, W., Tyeryar, S., & Crabbs, C. (2002). Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature, 415(January), 339–343. https://doi.org/10.1038/415339a.
Sivitz, W., Fink, B., Morgan, D., Fox, J., Donohoue, P., & Haynes, W. (1999). Sympathetic inhibition, leptin, and uncoupling protein subtype expression in normal fasting rats. American Journal of Physiology, 277(4), 668–677. https://doi.org/10.1152/ajpendo.1999.277.4.E668.
Talanian, J. L., Galloway, S. D. R., Heigenhauser, G. J. F., Bonen, A., & Spriet, L. L. (2007). Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of Applied Physiology, 102(4), 1439–1447. https://doi.org/10.1152/japplphysiol.01098.2006
Trapp, E. G., Chisholm, D. J., Freund, J., & Boutcher, S. H. (2008). The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. International Journal of Obesity, 32(4), 684–691. https://doi.org/10.1038/sj.ijo.0803781
Tuominen, J., Ebeling, P., Laquier, F., Heiman, M., Stephens, T., & Koivisto, V. (1997). Serum leptin concentration and fuel homeostasis in healthy man. European Journal of Clinical Investigation, 27(3), 206–2011. https://doi.org/10.1046/j.1365-2362.1997.940642.x.
Weigle, D., Duell, P. B., Connor, W. E., Steiner, R. A., Soules, M. R., & Kuijper, J. L. (1997). Effect of fasting, refeeding, and dietary fat restriction on plasma leptin levels. Journal of Clinical Endocrinology and Metabolism, 82(2), 561–565. https://doi.org/10.1210/jc.82.2.561
Weltman, a, Pritzlaff, C. J., Wideman, L., Considine, R. V, Fryburg, D. a, Gutgesell, M. E., Hartman, M. L., & Veldhuis, J. D. (2000). Intensity of acute exercise does not affect serum leptin concentrations in young men. Medicine and Science in Sports and Exercise, 32(9), 1556–1561. https://doi.org/10.1097/00005768-200009000-00005.
Williams, C. B., Zelt, J. G. E., Castellani, L. N., Little, J. P., Jung, M. E., Wright, D. C., Tschakovsky, M. E., & Gurd, B. J. (2013). Changes in mechanisms proposed to mediate fat loss following an acute bout of high-intensity interval and endurance exercise. Applied Physiology, Nutrition, and Metabolism, 38(12), 1236–1244. https://doi.org/10.1139/apnm-2013-0101
Zaccaria, M., Ermolao, A., Brugin, E., & Bergamin, M. (2013). Plasma leptin and energy expenditure during prolonged, moderate intensity, treadmill exercise. Journal of Endocrinological Investigation, 36(6), 396–401. https://doi.org/10.3275/8656
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This journal is covered under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/). The rights of printing and reproduction by any way and means are the property of the European Journal of Human Movement, and by extension of each one of the authors of the articles.