Clustering classification of cyclists according to the acute fatigue outcomes produced by an ultra-endurance event
DOI:
https://doi.org/10.21134/eurjhm.2023.50.4Keywords:
cycling, performance, cyclist profile, road cycling, fatigabilityAbstract
This study aimed to analyze the differences between clusters obtained by the acute effect of fatigue after an ultra-endurance event in the internal and external load of cyclists. 26 volunteers participated in the study, and they were divided into the experimental group (N = 18; height: 177 ± 8 cm; body mass: 78.6 ± 10.3 kg) and the control group (N = 8; height: 176 ± 10 cm; body mass: 78.0 ± 15.7 kg). The experimental group completed a 12 h non-stop cycling event. Jump height, lactate, plasma antioxidant capacity, pain perception and fatigue perception were measured before and after the event. Cyclists of the experimental group were classified considering their training characteristics (recreational vs. competitive) and by conducting a non-supervised K-means clustering. The differentiation of cyclists according to training characteristics resulted in a lower distance covered by recreational than competitive cyclists (279.4 ± 39.7 km vs. 371.0 ± 71.7 km; ES ≥ 0.8; p < 0.01), although no differences were observed in the remaining variables between groups (p > 0.05). The clustering analysis provided two clusters. Cluster 2 suffered a greater jump height reduction (-3.3 ± 1.6 vs. 1.2 ± 0.8; ES ≥ 0.8; p < 0.001) and increased pain and fatigue perception (ES ≥ 0.5; p < 0.05) after the race than Cluster 1. In conclusion, counter-movement jump can differentiate the fatigue produced by a cycling ultra-endurance event and therefore, this non-invasive technique is useful in fatigue monitoring and recovery planification.
Downloads
Metrics
References
Bescós, R., Rodríguez, F. A., Iglesias, X., Knechtle, B., Benítez, A., Marina, M., Padullés, J. M., Vázquez, J., & Torrado, P. (2011). Physiological demands of cyclists during an ultra-endurance relay race: A field study report. Chinese Journal of Physiology, 54(5), 339–346. https://doi.org/10.4077/CJP.2011.AMM065
Carins, S., Knicker, A. J., Thompson, M. W., & Sjøgaard, G. (2005). Evaluation of Models Used to Study Neuromuscular Fatigue: Exercise and Sport Sciences Reviews. Exercise and Sport Sciences Reviews, 33(1), 9–16.
Claudino, J. G., Cronin, J., Mezêncio, B., McMaster, D. T., McGuigan, M., Tricoli, V., Amadio, A. C., & Serrão, J. C. (2017). The countermovement jump to monitor neuromuscular status: A meta-analysis. Journal of Science and Medicine in Sport, 20(4), 397–402. https://doi.org/10.1016/J.JSAMS.2016.08.011
Clermont, C. A., Benson, L. C., Edwards, W. B., Hettinga, B. A., & Ferber, R. (2019). New Considerations for Wearable Technology Data: Changes in Running Biomechanics During a Marathon. Journal of Applied Biomechanics, 35(6), 401–409. https://doi.org/10.1123/JAB.2018-0453
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (Second). Lawrance Eribaum Associates.
Dantas, R., Caputo, F., Mendes, K., Sigwalt, A. R., Ghisoni, K., Lock, P. C., Remor, A. P., da Luz, D., Antonacci, L. G., & Latini, A. (2014). Increased platelet oxidative metabolism, blood oxidative stress and neopterin levels after ultra-endurance exercise. Journal of Sports Sciences, 32(1), 22–30. https://doi.org/10.1080/02640414.2013.797098
Dawson, D., Fletcher, A., & Hussey, F. (2015). Fatigue and Transportation Report To the Neville Committee. 29(1), 37–46.
Gandia, A., Carpes, F. P., Rodríguez, A., & Priego, J. I. (2020). Effect of cycling specialization on effort and physiological responses to uphill and flat cycling at similar intensity. European Journal of Sport Science, 1–7. https://doi.org/10.1080/17461391.2020.1785016
Gómez, M. C., Pallardó, F. V., Sastre, J., Viña, J., & Garcia, L. (2003). Allopurinol and Markers of Muscle Damage Among Participants in the Tour de France. JAMA, 289(19), 2503–2504. https://doi.org/10.1001/JAMA.289.19.2503-B
Hartigan, J. A. ., & Wong, M. . A. . (1979). Algorithm AS 136: A K-Means Clustering Algorithm Author ( s ): J Published by: Wiley for the Royal Statistical Society Stable URL : http://www.jstor.org/stable/2346830. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(1), 100–108.
Lecina, M., Castellar, C., Pradas, F., & López, I. (2022). 768-km Multi-Stage Ultra-Trail Case Study-Muscle Damage, Biochemical Alterations and Strength Loss on Lower Limbs. International Journal of Environmental Research and Public Health, 19(2). https://doi.org/10.3390/ijerph19020876
Lewis, N. A., Simpkin, A. J., Moseley, S., Turner, G., Homer, M., Redgrave, A., Pedlar, C. R., & Burden, R. (2020). Increased Oxidative Stress in Injured and Ill Elite International Olympic Rowers. International Journal of Sports Physiology and Performance, 15(5), 625–631. https://doi.org/10.1123/IJSPP.2019-0425
Lewis, N. A., Towey, C., Bruinvels, G., Howatson, G., & Pedlar, C. R. (2016). Effects of exercise on alterations in redox homeostasis in elite male and female endurance athletes using a clinical point-of-care test. Https://Doi.Org/10.1139/Apnm-2016-0208, 41(10), 1026–1032. https://doi.org/10.1139/APNM-2016-0208
Maunder, E., Seiler, S., Mildenhall, M. J., Kilding, A. E., & Plews, D. J. (2021). The Importance of ‘Durability’ in the Physiological Profiling of Endurance Athletes. Sports Medicine, 51(8), 1619–1628. https://doi.org/10.1007/S40279-021-01459-0/FIGURES/3
Mrakic, S., Gussoni, M., Moretti, S., Pratali, L., Giardini, G., Tacchini, P., Dellanoce, C., Tonacci, A., Mastorci, F., Borghini, A., Montorsi, M., & Vezzoli, A. (2015). Effects of mountain ultra-marathon running on ROS production and oxidative damage by micro-invasive analytic techniques. PLoS ONE, 10(11), 1–19. https://doi.org/10.1371/journal.pone.0141780
Mündermann, A., Nigg, B. M., Stefanyshyn, D. J., & Humble, R. N. (2002). Development of a reliable method to assess footwear comfort during running. Gait & Posture, 16(1), 38–45. https://doi.org/10.1016/S0966-6362(01)00197-7
Nikolaidis, P. T., Knechtle, B., Vancini, R., Gomes, M., & Sousa, C. (2021). Participation and Performance in the Oldest Ultramarathon-Comrades Marathon 1921-2019. International Journal of Sports Medicine, 42(7), 638–644. https://doi.org/10.1055/a-1303-4255
Ørtenblad, N., Westerblad, H., & Nielsen, J. (2013). Muscle glycogen stores and fatigue. The Journal of Physiology, 591(18), 4405–4413. https://doi.org/10.1113/JPHYSIOL.2013.251629
Pavlatou, M. G., Papastamataki, M., Apostolakou, F., Papassotiriou, I., & Tentolouris, N. (2009). FORT and FORD: two simple and rapid assays in the evaluation of oxidative stress in patients with type 2 diabetes mellitus. Metabolism, 58(11), 1657–1662. https://doi.org/10.1016/J.METABOL.2009.05.022
Priego, J. I., Kerr, Z. Y., Bertucci, W. M., & Carpes, F. P. (2018). The categorization of amateur cyclists as research participants: Findings from an observational study. Journal of Sports Sciences, 36(17), 2018–2024. https://doi.org/10.1080/02640414.2018.1432239
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20(C), 53–65. https://doi.org/10.1016/0377-0427(87)90125-7
Scheer, V. (2019). Participation trends of ultra endurance events. Sports Medicine and Arthroscopy Review, 27(1), 3–7. https://doi.org/10.1097/JSA.0000000000000198
Schenk, K., Rauch, S., Procter, E., Grasegger, K., Mrakic-Sposta, S., & Gatterer, H. (2021). Changes in Factors Regulating Serum Sodium Homeostasis During Two Ultra-Endurance Mountain Races of Different Distances: 69km vs. 121km. Frontiers in Physiology, 12(November). https://doi.org/10.3389/fphys.2021.764694
Shoak, M., Knechtle, B., Knechtle, P., Rüst, C., Rosemann, T., & Lepers, R. (2013). Participation and performance trends in ultracycling. Open Access Journal of Sports Medicine, 4, 41. https://doi.org/10.2147/OAJSM.S40142
Smith, K. A., Kisiolek, J. N., Willingham, B. D., Morrissey, M. C., Leyh, S. M., Saracino, P. G., Baur, D. A., Cook, M. D., & Ormsbee, M. J. (2020). Ultra-endurance triathlon performance and markers of whole-body and gut-specific inflammation. European Journal of Applied Physiology, 120(2), 349–357. https://doi.org/10.1007/S00421-019-04279-3
Stelzer, I., Kröpfl, J. M., Fuchs, R., Pekovits, K., Mangge, H., Raggam, R. B., Gruber, H. J., Prüller, F., Hofmann, P., Truschnig-Wilders, M., Obermayer-Pietsch, B., Haushofer, A. C., Kessler, H. H., & Mächler, P. (2015). Ultra-endurance exercise induces stress and inflammation and affects circulating hematopoietic progenitor cell function. Scandinavian Journal of Medicine and Science in Sports, 25(5), e442–e450. https://doi.org/10.1111/SMS.12347
Suárez, V. C., Valdivielso, F. N., & Ravé, J. M. G. (2011). Changes in biochemical parameters after a 20-hour ultra-endurance kayak and cycling event. International SportMed Journal, 12(1), 1–6.
Tanner, R. K., Fuller, K. L., & Ross, M. L. R. (2010). Evaluation of three portable blood lactate analysers: Lactate Pro, Lactate Scout and Lactate Plus. European Journal of Applied Physiology, 109(3), 551–559. https://doi.org/10.1007/S00421-010-1379-9/FIGURES/5
Tomczak, M., & Tomczak, E. (2014). The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends in Sport Sciences, 1(21), 19–25.
Truppa, L., Guaitolini, M., Garofalo, P., Castagna, C., & Mannini, A. (2020). Assessment of Biomechanical Response to Fatigue through Wearable Sensors in Semi-Professional Football Referees. Sensors (Basel, Switzerland), 21(1), 1–15. https://doi.org/10.3390/S21010066
Turner, J. E., Bennett, S. J., Bosch, J. A., Griffiths, H. R., & Aldred, S. (2014). Ultra-endurance exercise: Unanswered questions in redox biology and immunology. Biochemical Society Transactions, 42(4), 989–995. https://doi.org/10.1042/BST20140120
van der Zwaard, S., de Ruiter, C. J., Jaspers, R. T., & de Koning, J. J. (2019). Anthropometric Clusters of Competitive Cyclists and Their Sprint and Endurance Performance. Frontiers in Physiology, 10, 1276. https://doi.org/10.3389/FPHYS.2019.01276/BIBTEX
Vitti, A., Nikolaidis, P. T., Villiger, E., Onywera, V., & Knechtle, B. (2020). The ‘New York City Marathon’: Participation and performance trends of 1.2M runners during half-century. Research in Sports Medicine (Print), 28(1), 121–137. https://doi.org/10.1080/15438627.2019.1586705
Wolff, S., Picco, J. M., Díaz, L., Valenzuela, P. L., Gonzalez, E., Santos, A., Matile, P., Wolff, D., Boraita, A., & Lucia, A. (2022). Exercise-Induced Cardiac Fatigue in Recreational Ultramarathon Runners at Moderate Altitude: Insights From Myocardial Deformation Analysis. Frontiers in Cardiovascular Medicine, 8(January), 1–8. https://doi.org/10.3389/fcvm.2021.744393
Wu, P. P. Y., Sterkenburg, N., Everett, K., Chapman, D. W., White, N., & Mengersen, K. (2019). Predicting fatigue using countermovement jump force-time signatures: PCA can distinguish neuromuscular versus metabolic fatigue. PLoS ONE, 14(7), 1–16. https://doi.org/10.1371/journal.pone.0219295
Yang, W. H., Park, H., Grau, M., & Heine, O. (2020). Decreased Blood Glucose and Lactate: Is a Useful Indicator of Recovery Ability in Athletes? International Journal of Environmental Research and Public Health, 17(15), 1–16. https://doi.org/10.3390/IJERPH17155470
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This journal is covered under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/). The rights of printing and reproduction by any way and means are the property of the European Journal of Human Movement, and by extension of each one of the authors of the articles.