Profiling Movement Quality Characteristics of Children (9-11y) During Recess

Cain Craig Truman Clark, Claire Marie Barnes, Huw D Summers, Kelly Mackintosh, Gareth Stratton


Introduction. Frequency spectrum characteristics derived from raw accelerometry, such as spectral purity, have the potential to reveal detailed information about children’s movement quality, but remain unexplored in children’s physical activity. The aim of this study was to investigate and profile children’s recess physical activity and movement quality using a novel analytical approach. Materials and Methods. A powered sample of twenty-four children (18 boys) (10.5±0.6y, 1.44±0.09m, 39.6±9.5kg, body mass index; 18.8±3.1 kg.m2) wore an ankle-mounted accelerometer during school recess, for one school-week. Hierarchical clustering, Spearman’s rho and the Mann-Whitney U test were used to assess relationships between characteristics, and to assess inter-day differences. Results. There were no significant inter-day differences found for overall activity (P>0.05), yet significant differences were found for spectral purity derived movement quality (P<0.001). Overall activity was hierarchically clustered, and positively correlated, with spectral purity (P<0.05). Discussion. This is the first study to report spectral purity derived movement quality of children’s physical activity in an uncontrolled setting and our results highlight potential for future research.

Full Text:



Aziz, O., Park, E. J., Mori, G., & Robinovitch, S. N. (2014). Distinguishing the causes of falls in humans using an array of wearable tri-axial accelerometers. Gait Posture, 39(1), 506-512. doi: 10.1016/j.gaitpost.2013.08.034

Aziz, O., & Robinovitch, S. N. (2011). An analysis of the accuracy of wearable sensors for classifying the causes of falls in humans. IEEE Trans Neural Syst Rehabil Eng, 19(6), 670-676. doi: 10.1109/TNSRE.2011.2162250

Barnes, C. M., Clark, C. C., Holton, M. D., Stratton, G., & Summers, H. D. (2016). Quantitative Time-Profiling of Children's Activity and Motion. Med Sci Sports Exerc. doi: 10.1249/MSS.0000000000001085

Bellanca, J. L., Lowry, K. A., Vanswearingen, J. M., Brach, J. S., & Redfern, M. S. (2013). Harmonic ratios: a quantification of step to step symmetry. J Biomech, 46(4), 828-831. doi: 10.1016/j.jbiomech.2012.12.008

Blair, S. N., Kohl, H. W., Gordon, N. F., & Paffenbarger, R. S., Jr. (1992). How much physical activity is good for health? Annu Rev Public Health, 13, 99-126. doi: 10.1146/annurev.pu.13.050192.000531

Bonomi, A. G. (2013). Towards valid estimates of activity energy expenditure using an accelerometer: searching for a proper analytical strategy and big data. J Appl Physiol (1985). doi: 10.1152/japplphysiol.01028.2013

Bonomi, A. G., Goris, A. H., Yin, B., & Westerterp, K. R. (2009a). Detection of type, duration, and intensity of physical activity using an accelerometer. Med Sci Sports Exerc, 41(9), 1770-1777. doi: 10.1249/MSS.0b013e3181a24536

Bonomi, A. G., Plasqui, G., Goris, A. H., & Westerterp, K. R. (2009b). Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer. J Appl Physiol (1985), 107(3), 655-661. doi: 10.1152/japplphysiol.00150.2009

Bonomi, A. G., Plasqui, G., Goris, A. H., & Westerterp, K. R. (2012). Aspects of activity behavior as a determinant of the physical activity level. Scand J Med Sci Sports, 22(1), 139-145. doi: 10.1111/j.1600-0838.2010.01130.x

Brach, J. S., McGurl, D., Wert, D., Vanswearingen, J. M., Perera, S., Cham, R., & Studenski, S. (2011). Validation of a measure of smoothness of walking. J Gerontol A Biol Sci Med Sci, 66(1), 136-141. doi: 10.1093/gerona/glq170

Brusseau, T., Kulinna, P. H., Kloeppel, T., & Ferry, M. (2012). Seasonal variation of American Indian children’s school-day physical activity Biomedical Human Kinetics, 4, 82-87

Cai, L. L., Fong, A. J., Otoshi, C. K., Liang, Y., Burdick, J. W., Roy, R. R., & Edgerton, V. R. (2006). Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci, 26(41), 10564-10568. doi: 10.1523/JNEUROSCI.2266-06.2006

Centers for Disease, C., & Prevention. (2003). Physical activity levels among children aged 9-13 years--United States, 2002. MMWR Morb Mortal Wkly Rep, 52(33), 785-788

Clark, C. C., Barnes, C. M., Stratton, G., McNarry, M. A., Mackintosh, K. A., & Summers, H. D. (2016a). A Review of Emerging Analytical Techniques for Objective Physical Activity Measurement in Humans. Sports Med. doi: 10.1007/s40279-016-0585-y

Clark, C. C. T. (2017). Profiling movement and gait quality using accelerometry in children's physical activity: consider quality, not just quantity. Br J Sports Med. doi: 10.1136/bjsports-2017-098204

Clark, C. C. T., Barnes, C. M., Holton, M. D., Summers, H. D., & Stratton, G. (2016b). Profiling movement quality and gait characteristics according to body-mass index in children (9–11 y). Human Movement Science, 49, 291-300. doi:

Clark, C. C. T., Barnes, C. M., Holton, M. D., Summers, H. D., & Stratton, G. (2016c). SlamTracker Accuracy under Static and Controlled Movement Conditions. Sport Science Review, 25(5-6), 321-344

Clark, C. C. T., Barnes, C. M., Mackintosh, K. A., Summers, H., & Stratton, G. (2015). Quantitative, multiscale profiling of Motion and Activity in Children 20th Annual Conference of the European College of Sport Science. Malmo, Sweden.

Clark, C. C. T., Barnes, C. M., Swindell, N. J., Holton, M. D., Bingham, D. D., Collings, P. J., . . . Stratton, G. (2017). Profiling Movement and Gait Quality Characteristics in Pre-School Children. J Mot Behav, 1-9. doi: 10.1080/00222895.2017.1375454

Cole, T. J., & Lobstein, T. (2012). Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes, 7(4), 284-294. doi: 10.1111/j.2047-6310.2012.00064.x

De Meester, F., Van Dyck, D., De Bourdeaudhuij, I., Deforche, B., & Cardon, G. (2013). Do psychosocial factors moderate the association between neighborhood walkability and adolescents' physical activity? Soc Sci Med, 81, 1-9. doi: 10.1016/j.socscimed.2013.01.013

Erwin, H. E., Ickes, M., Ahn, S., & Fedewa, A. (2014). Impact of Recess Interventions on Children's Physical Activity-A Meta-Analysis. Am J Health Promot, 28(3), 159-167. doi: 10.4278/ajhp.120926-LIT-470

Fairclough, S. J., Beighle, A., Erwin, H., & Ridgers, N. D. (2012). School day segmented physical activity patterns of high and low active children. BMC Public Health, 12, 406. doi: 10.1186/1471-2458-12-406

Gage, H. (1964). Accelerographic analysis of human gait. The American Society of Mechanical Engineers, 64-WA/HUF-8, 1-12

Gibbons, J. D., & Chakraborti, S. (2011). Nonparametric statisical inference (5th ed.). Boca Raton, FL: Chapman & Hall/CRC press, Taylor & Francis group.

Hinkley, T., Crawford, D., Salmon, J., Okely, A. D., & Hesketh, K. (2008). Preschool children and physical activity: a review of correlates. Am J Prev Med, 34(5), 435-441. doi: 10.1016/j.amepre.2008.02.001

Hinkley, T., Salmon, J., Okely, A. D., & Trost, S. G. (2010). Correlates of sedentary behaviours in preschool children: a review. Int J Behav Nutr Phys Act, 7, 66. doi: 10.1186/1479-5868-7-66

Idler, E. L., & Benyamini, Y. (1997). Self-rated health and mortality: a review of twenty-seven community studies. J Health Soc Behav, 38(1), 21-37

Jago, R., Watson, K., Baranowski, T., Zakeri, I., Yoo, S., Baranowski, J., & Conry, K. (2006). Pedometer reliability, validity and daily activity targets among 10- to 15-year-old boys. J Sports Sci, 24(3), 241-251. doi: 10.1080/02640410500141661

Kangas, M., Korpelainen, R., Vikman, I., Nyberg, L., & Jamsa, T. (2015). Sensitivity and false alarm rate of a fall sensor in long-term fall detection in the elderly. Gerontology, 61(1), 61-68. doi: 10.1159/000362720

Leonard, S. T., & Droege, M. (2008). The uses and benefits of cluster analysis in pharmacy research. Res Social Adm Pharm, 4(1), 1-11. doi: 10.1016/j.sapharm.2007.02.001

Liu, S., Gao, R. X., John, D., Staudenmayer, J. W., & Freedson, P. S. (2012). Multisensor data fusion for physical activity assessment. IEEE Trans Biomed Eng, 59(3), 687-696. doi: 10.1109/TBME.2011.2178070

Lohmann, T. G., Roche, A. F., & Martorell, R. (1988). Anthropometric Standardization Reference Manual. Champaign, IL: Human Kinetics.

Mannini, A., Intille, S. S., Rosenberger, M., Sabatini, A. M., & Haskell, W. (2013). Activity recognition using a single accelerometer placed at the wrist or ankle. Med Sci Sports Exerc, 45(11), 2193-2203. doi: 10.1249/MSS.0b013e31829736d6

Marques, A., Mota, J., Gaspar, T., & Gaspar de Matos, M. (2017). Associations between self-reported fitness and self-rated health, lifesatisfaction and health-related quality of life among adolescents. Journal of Exercise Science & Fitness, 15, 8-11

Metcalf, B., Henley, W., & Wilkin, T. (2013). Republished research: effectiveness of intervention on physical activity of children: systematic review and meta-analysis of controlled trials with objectively measured outcomes (EarlyBird 54). Br J Sports Med, 47(4), 226. doi: 10.1136/bjsports-2013-e5888rep

Myer, G. D., Faigenbaum, A. D., Edwards, N. M., Clark, J. F., Best, T. M., & Sallis, R. E. (2015). Sixty minutes of what? A developing brain perspective for activating children with an integrative exercise approach. Br J Sports Med, 49(23), 1510-1516. doi: 10.1136/bjsports-2014-093661

Ortega, F. B., Ruiz, J. R., Espana-Romero, V., Vicente-Rodriguez, G., Martinez-Gomez, D., Manios, Y., . . . group, H. s. (2011). The International Fitness Scale (IFIS): usefulness of self-reported fitness in youth. Int J Epidemiol, 40(3), 701-711. doi: 10.1093/ije/dyr039

Parrish, A. M., Okely, A. D., Stanley, R. M., & Ridgers, N. D. (2013). The effect of school recess interventions on physical activity : a systematic review. Sports Med, 43(4), 287-299. doi: 10.1007/s40279-013-0024-2

Peterson, D. F., Degenhardt, B. F., & Smith, C. M. (2003). Correlation between prior exercise and present health and fitness status of entering medical students. J Am Osteopath Assoc, 103(8), 361-366

Ridgers, N. D., Salmon, J., Parrish, A. M., Stanley, R. M., & Okely, A. D. (2012). Physical activity during school recess: a systematic review. Am J Prev Med, 43(3), 320-328. doi: 10.1016/j.amepre.2012.05.019

Ridgers, N. D., Stratton, G., Clark, E., Fairclough, S. J., & Richardson, D. J. (2006). Day-to-day and seasonal variability of physical activity during school recess. Prev Med, 42(5), 372-374. doi: 10.1016/j.ypmed.2006.01.017

Rosano, C., Brach, J., Studenski, S., Longstreth, W. T., Jr., & Newman, A. B. (2007). Gait variability is associated with subclinical brain vascular abnormalities in high-functioning older adults. Neuroepidemiology, 29(3-4), 193-200. doi: 10.1159/000111582

RWJF. (2007). Robert Wood Johnson Foundation. Recess Rules - Why the undervalued playtime may be America’s best investment for healthy kids and healthy schools.

Saracli, S., Dogan, N., & Dogan, I. (2013). Comparison of hierarchical cluster analysis methods by cophenetic correlation. Journal of Inequalities and Applications, 203, 1-8

Schonlau, M. (2002). The Clustergram: A graph for visualizing hierarchical and non-hierarchical cluster analyses. The Stata Journal 3, 316-327

Seabra, A. C., Maia, J., Seabra, A., Welk, G., Brustad, R., & Fonseca, A. M. (2012). Evaluating the Youth Physical Activity Promotion Model among Portuguese Elementary Schoolchildren. J Phys Act Health

Smidt, G. L., Arora, J. S., & Johnston, R. C. (1971). Accelerographic analysis of several types of walking. Am J Phys Med, 50(6), 285-300

Sokal, R. R., & Rohlf, J. (1962). The comparison of dendrograms by objective methods. Taxon, 11, 33-40

Stergiou, N., & Decker, L. M. (2011). Human movement variability, nonlinear dynamics, and pathology: is there a connection? Hum Mov Sci, 30(5), 869-888. doi: 10.1016/j.humov.2011.06.002

Stratton, G., Ridgers, N. D., Fairclough, S. J., & Richardson, D. J. (2007). Physical activity levels of normal-weight and overweight girls and boys during primary school recess. Obesity (Silver Spring), 15(6), 1513-1519. doi: 10.1038/oby.2007.179

Strong, W. B., Malina, R. M., Blimkie, C. J., Daniels, S. R., Dishman, R. K., Gutin, B., . . . Trudeau, F. (2005). Evidence based physical activity for school-age youth. J Pediatr, 146(6), 732-737. doi: 10.1016/j.jpeds.2005.01.055

Telama, R., Yang, X., Leskinen, E., Kankaanpaa, A., Hirvensalo, M., Tammelin, T., . . . Raitakari, O. T. (2013). Tracking of Physical Activity from Early Childhood through Youth into Adulthood. Med Sci Sports Exerc. doi: 10.1249/MSS.0000000000000181

Tonkin, J. A., Rees, P., Brown, M. R., Errington, R. J., Smith, P. J., Chappell, S. C., & Summers, H. D. (2012). Automated Cell Identification and Tracking Using Nanoparticle Moving-Light-Displays. Plos One, 7(7). doi: ARTN e40835

DOI 10.1371/journal.pone.0040835

Van Der Horst, K., Paw, M. J., Twisk, J. W., & Van Mechelen, W. (2007). A brief review on correlates of physical activity and sedentariness in youth. Med Sci Sports Exerc, 39(8), 1241-1250. doi: 10.1249/mss.0b013e318059bf35

van Hees, V., Pias, M., Taherian, S., Ekelund, U., & Brage, S. (2010). A method to compare new and traditional accelerometry data in physical activity monitoring IEEE International Symposium A World Wireless, Mobile Multimedia Network.

van Sluijs, E. M., Kriemler, S., & McMinn, A. M. (2011). The effect of community and family interventions on young people's physical activity levels: a review of reviews and updated systematic review. Br J Sports Med, 45(11), 914-922. doi: 10.1136/bjsports-2011-090187

Wilson, R. P., Shepard, E. L., & Liebsch, N. (2007). Prying into the intimate details of animal lives: Use of a daily diary on animals. Endangered Species Research, 3. doi: 10.3354/esr00064

Wilson, R. P., White, C. R., Quintana, F., Halsey, L. G., Liebsch, N., Martin, G. R., & Butler, P. J. (2006). Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. J Anim Ecol, 75(5), 1081-1090. doi: 10.1111/j.1365-2656.2006.01127.x

Yildirim, M., Arundell, L., Cerin, E., Carson, V., Brown, H., Crawford, D., . . . Salmon, J. (2014). What helps children to move more at school recess and lunchtime? Mid-intervention results from Transform-Us! cluster-randomised controlled trial. Br J Sports Med, 48(3), 271-277. doi: 10.1136/bjsports-2013-092466


  • There are currently no refbacks.

Copyright (c) 2018 European Journal of Human Movement

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

European Journal of Human Movement EISSN: 2386-4095

Motricidad. European Journal of Human Movement (previous title) EISSN: 2172-2862

Short Title: Eur. J. Hum. Mov.

Six-monthly Journal