Effects of different breathing patterns on biochemical, cardiorespiratory and performance variables in young tennis players

Authors

  • Rocio Cupeiro Coto Asociación Española de Ciencias del Deporte
  • Pedro José Benito Peinado
  • Jose Antonio Aparicio Agenjo
  • Miguel Angel Rojo Tirado
  • Javier Butragueño Revenga
  • Ana Belén Peinado Lozano

Abstract

Aim: To investigate the effect of different breathing patterns (spontaneous breathing as a control, hyperventilation and forced exhalation) on biochemical, cardiorespiratory and performance variables following a specific tennis test. Methods: Thirteen trained nationally ranked male tennis participated in this study. In three different sessions the players performed a passing-shot drill test, only modifying the breathing pattern (hyperventilation, forced exhalation or spontaneous breathing) during the recovery periods in randomized and counterbalance manner. Results: No differences were found between the three tests in biochemical variables (pH: F2,12=0.118, P=0.890; pCO2: F2,24=1.24, P=0.307; [HCO3-]: F2,24=3.257, P=0.056; [La-] F2,24=0.179, P=0.838) except for the base excess (BE; F2,24=4.339, P=0.025). On the other hand, ventilation and breathing frequency were different among the test (VE: F2,24=23.134, P<0.001; BF: F2,24=74.633, P<0.001, respectively), while VO2 and heart rate were similar (VO2: F2,24=0.031, P=0.9691; HR: F2,24=1.213, P=0.315, respectively). Finally, no relevant differences were observed for the performance variables, being the mean speed stroke, maximum speed stroke and precision stroke similar between the three tests (F2,36=0.043, P=0.958; F2,36=0.007, P=0.993; F2,36=0.435, P=0.651, respectively). Conclusion: It seems that the performance during a submaximal specific tennis drill is not influenced by the breathing pattern used during recoveries. Therefore, altering breathing pattern does not seem a good strategy to modify the acid-base status or performance during a tennis trial.

References

Baiget, E., Rodríguez, F. A., & Iglesias, X. (2013). Relationship between technical and physiological parameters in competition tennis players. Rev Int Med Cienc Act Fis Deporte.

Bishop, D., Edge, J., Davis, C., & Goodman, C. (2004). Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. Med Sci Sports Exerc, 36(5), 807-813. doi: 00005768-200405000-00011 [pii]

Christmass, M. A., Richmond, S. E., Cable, N. T., Arthur, P. G., & Hartmann, P. E. (1998). Exercise intensity and metabolic response in singles tennis. [Research Support, Non-U.S. Gov't]. J Sports Sci, 16(8), 739-747. doi: 10.1080/026404198366371

Coast, J. R., Rasmussen, S. A., Krause, K. M., O'Kroy, J. A., Loy, R. A., & Rhodes, J. (1993). Ventilatory work and oxygen consumption during exercise and hyperventilation. J Appl Physiol (1985), 74(2), 793-798.

Davey, P. R., Thorpe, R. D., & Williams, C. (2002). Fatigue decreases skilled tennis performance. J Sports Sci, 20(4), 311-318. doi: 10.1080/026404102753576080

Dick, T. E., Hsieh, Y. H., Dhingra, R. R., Baekey, D. M., Galan, R. F., Wehrwein, E., & Morris, K. F. (2014). Cardiorespiratory coupling: common rhythms in cardiac, sympathetic, and respiratory activities. Prog Brain Res, 209, 191-205. doi: B978-0-444-63274-6.00010-2 [pii]10.1016/B978-0-444-63274-6.00010-2

Fernandez, J., Mendez-Villanueva, A., & Pluim, B. M. (2006). Intensity of tennis match play. [Review]. Br J Sports Med, 40(5), 387-391; discussion 391. doi: 10.1136/bjsm.2005.023168

Ferrauti, A. (2008). Hit & Turn Tennis Test. Bochum: International Tennis Federation.

Ferrauti, A., Kinner, V., & Fernandez-Fernandez, J. (2011). The Hit & Turn Tennis Test: An acoustically controlled endurance test for tennis players. J Sports Sci, 29(5), 485-494.

Ferrauti, A., Pluim, B. M., & Weber, K. (2001). The effect of recovery duration on running speed and stroke quality during intermittent training drills in elite tennis players. J Sports Sci, 19(4), 235-242.

Forbes, S. C., Raymer, G. H., Kowalchuk, J. M., & Marsh, G. D. (2005). NaHCO3-induced alkalosis reduces the phosphocreatine slow component during heavy-intensity forearm exercise. J Appl Physiol (1985), 99(5), 1668-1675. doi: 01200.2004 [pii]10.1152/japplphysiol.01200.2004

Hollidge-Horvat, M. G., Parolin, M. L., Wong, D., Jones, N. L., & Heigenhauser, G. J. (2000). Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. Am J Physiol Endocrinol Metab, 278(2), E316-329.

Linderman, J., & Fahey, T. D. (1991). Sodium bicarbonate ingestion and exercise performance. An update. Sports Med, 11(2), 71-77.

Lyons, M., Al-Nakeeb, Y., Hankey, J., & Nevill, A. (2013). The Effect of Moderate and High-Intensity Fatigue on Groundstroke Accuracy in Expert and Non-Expert Tennis Players. Journal of Sports Science and Medicine, 12(2), 298-308.

McNaughton, L. R., Ford, S., & Newbold, C. (1997). Effect of sodium bicarbonate ingestion on high intensity exercise in moderately trained women. The Journal of Strength & Conditioning Research, 11(2), 98-102.

Mendez-Villanueva, A., Fernandez-Fernandez, J., Bishop, D., Fernandez-Garcia, B., & Terrados, N. (2007). Activity patterns, blood lactate concentrations and ratings of perceived exertion during a professional singles tennis tournament. Br J Sports Med, 41(5), 296-300; discussion 300. doi: 10.1136/bjsm.2006.030536

Requena, B., Zabala, M., Padial, P., & Feriche, B. (2005). Sodium bicarbonate and sodium citrate: ergogenic aids? J Strength Cond Res, 19(1), 213-224.

Sakamoto, A., Naito, H., & Chow, C. M. (2014). Hyperventilation as a strategy for improved repeated sprint performance. J Strength Cond Res, 28(4), 1119-1126. doi: 10.1519/JSC.0b013e3182a1fe5c

Sostaric, S. M., Skinner, S. L., Brown, M. J., Sangkabutra, T., Medved, I., Medley, T., . . . McKenna, M. J. (2006). Alkalosis increases muscle K+ release, but lowers plasma [K+] and delays fatigue during dynamic forearm exercise. J Physiol, 570(Pt 1), 185-205. doi: jphysiol.2005.094615 [pii]10.1113/jphysiol.2005.094615

Spriet, L. L., Matsos, C. G., Peters, S. J., Heigenhauser, G. J., & Jones, N. L. (1985). Effects of acidosis on rat muscle metabolism and performance during heavy exercise. Am J Physiol, 248(3), C337-347.

Stephens, T. J., McKenna, M. J., Canny, B. J., Snow, R. J., & McConell, G. K. (2002). Effect of sodium bicarbonate on muscle metabolism during intense endurance cycling. Med Sci Sports Exerc, 34(4), 614-621.

Street, D., Nielsen, J. J., Bangsbo, J., & Juel, C. (2005). Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium. J Physiol, 566(2), 481-489. doi: jphysiol.2005.086801 [pii]10.1113/jphysiol.2005.086801

Walsh, M. L., Takeda, C., Takahashi, A., Ikeda, Y., Endo, M., Miura, A., . . . Fukuba, Y. (2006). Volitional hyperventilation during ramp exercise to exhaustion. Appl Physiol Nutr Metab, 31(3), 211-217. doi: h05-025 [pii]10.1139/h05-025

Wu, C. L., Shih, M. C., Yang, C. C., Huang, M. H., & Chang, C. K. (2010). Sodium bicarbonate supplementation prevents skilled tennis performance decline after a simulated match. J Int Soc Sports Nutr, 7, 33. doi: 10.1186/1550-2783-7-33

Downloads

Published

2018-01-15

Issue

Section

European Journal of Human Movement